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Abstract

The Seiberg-Witten map for noncommutative Yang-Mills theories is
studied and methods for its explicit construction are discussed which are
valid for any gauge group. In particular the use of the evolution equation is
described in some detail and its relation to the cohomological approach is
elucidated. Cohomological methods which are applicable to gauge theories
requiring the Batalin-Vilkoviskii antifield formalism are briefly mentioned.
Also, the analogy of the Weyl-Moyal star product with the star product of
open bosonic string field theory and possible ramifications of this analogy
are briefly mentioned.
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1 Introduction

Noncommutative field theories have recently received much attention. Seiberg
and Witten [1] have argued that certain noncommutative gauge theories are
equivalent to commutative ones and in particular that there exists a map from
a commutative gauge field to a noncommutative one, which is compatible with
the gauge structure of each. This map has become known as the Seiberg-Witten
(SW) map.

In two recent papers [2, 3] we have discussed a cohomological method for
constructing explicitly this map. Here we describe a slightly modified proce-
dure based on the idea that the structure equations of the gauge group of the
noncommutative theory are a deformation of those of the gauge group of the
commutative theory. We will consider gauge theories on the noncommutative
space defined by [

xi ?, xj
]

= iθij , (1)

where θ is a constant Poisson tensor. The “?” operation is the associative
Weyl-Moyal product

f ? g = f e
i
2 θ
ij
←
∂i
→
∂jg . (2)

We believe that our methods are much more general, and can in fact be used
even when θ is not constant, but in this paper we shall make use of the fact
that the xi derivative ∂i of functions satisfies the Leibniz rule with respect to
the star product

∂i(f ? g) = (∂if) ? g + f ? (∂ig), (3)

just as it does with respect to the ordinary product. This simple relation requires
θ to be constant.

2 Structure Equations

The structure equations of a gauge group can be expressed in terms of a ghost
field λ(x) and the gauge potential ai(x) by giving the action of the BRST
operator s

sλ = iλ · λ, (4)
sai = ∂iλ− iai · λ+ iλ · ai . (5)

Here λ and ai are valued in a Lie algebra and can be represented by matrices,
the matrix elements of the ghost field being anticommuting functions of x. In a
representation the product would imply matrix multiplication. The operator s
is an odd superderivation of ghost number one

s(f · g) = (sf) · g ± f · sg, (6)
s2 = 0, (7)
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which commutes with the derivatives

s∂i = ∂is. (8)

As usual, the signs in (6) depend on the parity of f . Our task is to deform the
above structure equations into

sΛ = iΛ ? Λ, (9)
sAi = ∂iΛ− i[Ai ?, Λ], (10)

where Ai = Ai(a, ∂a, ∂2a, . . .) is an even local functional of ai, of ghost number
zero, and Λ = Λ(λ, ∂λ, . . . , a, ∂a, . . .) is an odd local functional of ai and λ, of
ghost number one (like λ). We take s to be undeformed and to satisfy (7), (8)
and

s(f ? g) = sf ? g ± f ? sg. (11)

The solution consists in finding explicit expressions for the functionals Ai and
Λ. This can be done as expansions in θ

Λ = Λ(0) + Λ(1) + . . . , Λ(0) = λ , (12)

Ai = A
(0)
i +A

(1)
i + . . . , A

(0)
i = ai . (13)

The first order terms were given already in [1]

Λ(1) =
1
4
θkl {∂kλ, al} , (14)

A
(1)
i = −1

4
θkl {ak, ∂lai + fli} , (15)

where
fli = ∂lai − ∂ial − i[al, ai] (16)

is the commutative field strength, and expressions for Λ(2) andA(2)
i are known [2,

4, 6], see also below.
A systematic way to obtain the expansion in θ was described in [2, 3] and

the consistency of the procedure was demonstrated in [7]. Each order in θ is
manifestly local.

One sees already from (14) and (15) that Λ and Ai cannot be Lie algebra
valued in general, and we follow [5, 6] by allowing them to be in the enveloping
algebra of the Lie algebra of λ and ai. A representation of this Lie algebra lifts
naturally to a representation of its enveloping algebra.

3 Evolution Equations

There is an alternative approach for the study of the SW map, which is based
on a differential equation [1]. Let us introduce a “time” parameter t in front
of θ, in such a way that θij → t θij , Λ → Λ(t) and Ai → Ai(t), while keeping
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s independent of t. Notice that Λ and Ai acquire a t-dependence through θ.
Differentiating the structure equations (9) and (10) with respect to t, we obtain1

s
•

Λ = i
•

Λ ? Λ + iΛ ?
•

Λ +iΛ
•
? Λ, (17)

s
•

Ai =
•

Ai ? Λ + Λ ?
•

Ai +Di

•

Λ −iAi
•
? Λ + iΛ

•
? Ai, (18)

where
Di = ∂i − i[Ai ?, · ] (19)

is the covariant derivative at time t. The star product itself depends on the
evolution parameter t, and therefore it has also to be differentiated

? = e
1
2 it
←
∂iθ

ij
→
∂j ,

•
?= e

1
2 it
←
∂iθ

ij
→
∂j
i

2

←
∂k θ

kl
→
∂l . (20)

Explicitly this yields

f
•
? g = i

θkl

2
∂kf ? ∂lg. (21)

Notice that for simplicity we have restricted ourselves to a linear path in θ-space,
i.e. we are considering a linear one-parameter family of deformations of θ. In
principle it would be possible to consider an arbitrary variation with respect to
θ corresponding to an arbitrary path in θ-space, like e.g. in [4].

The structure of the right hand side of (17) and (18) leads in a natural way
to the definition of a new operator2 at time t:

∆t =

 s− i{Λ ?, ·} on odd quantities,

s− i[Λ ?, ·] on even quantities.
(22)

It has the following properties

∆tAi = ∂iΛ, ∆2
t = 0, [∆t, Di] = 0, (23)

∆t(f1 ? f2) = (∆tf1) ? f2 ± f1 ? (∆tf2), (24)

i.e. ∆t is nilpotent, it commutes with the covariant derivative at time t and it
satisfies a super-Leibniz rule. This is a consequence of the fact that

s2 = 0, s∂i = ∂is, (25)

and of the associativity of the star product. Therefore, ∆t can be interpreted
as a coboundary operator in a suitably defined cohomology.

Using the operators ∆t and Di the equations (17) and (18) can be rewritten
as

∆t

•

Λ = −1
2
θkl∂kΛ ? ∂lΛ = −1

2
θklBk ? Bl, (26)

∆t

•

Ai = Di

•

Λ +
1
2
θkl{∂kAi ?, ∂lΛ} = Di

•

Λ +
1
2
θkl{∂kAi ?, Bl}. (27)

1As customary the dot denotes differentiation with respect to t.
2∆t is a simple generalization of the operator ∆ introduced in [2], which now should be

called ∆0. Also, what was called ∆̂ in [3] should now be called ∆1.
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Here we have introduced the notation

Bi = ∂iΛ, (28)

which is useful because only derivatives of Λ enter in the right hand side of (26)
and (27), but never Λ itself. The action of ∆t in terms of these new variables
Ak and Bk takes a particularly simple form

∆tAk = Bk, ∆tBk = 0. (29)

With this action the consistency condition that ∆t applied to the right hand
side of equation (26) vanishes is verified. For (27) we find that ∆t on the right
hand side gives 1

2θ
kl[∆tFki ?, Bl]. We will comment on this later in section 4.

The differential evolution equations which provide a solution to the equations
(26), (27) are given by [1]

•

Λ =
1
4
θij {∂iΛ ?, Aj} , (30)

•

Ai = −1
4
θkl {Ak ?, ∂lAi + Fli} , (31)

where
Fli = ∂lAi − ∂iAl − i[Al ?, Ai] (32)

is the noncommutative field strength. This can be easily checked by substituting
these expressions in (26) and (27).

4 The Homotopy Operator

There is a way of computing the expressions (30) for
•

Λ and (31) for
•

Ai through
a suitably defined homotopy operator Kt. Clearly, it is not possible to invert
∆t, because it is nilpotent, but if we construct an operator such that

Kt∆t + ∆tKt = 1, (33)

then an equation of the form
∆tf = m, (34)

with
∆tm = 0, (35)

has a solution of the type
f = Ktm, (36)

because
m = ∆tKtm+Kt∆tm = ∆tKtm. (37)

The solution (36) is not unique: Ktm + ∆th, with some appropriate h, is also
a solution, since ∆2

t = 0. This is the same method we applied for t = 0 in
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[2, 3], which closely follows the ideas developed in [8] to study anomalies in
chiral gauge theories.

Let us construct such a homotopy operator Kt explicitly. We start by defin-
ing a linear operator K̃t such that

K̃tBk = Ak, K̃tAk = 0. (38)

On both Ak and Bk it satisfies

K̃t∆t + ∆tK̃t = 1. (39)

Further, we require that it is a super-derivation

K̃t(f1 ? f2) = (K̃tf1) ? f2 ± f1 ? (K̃tf2) (40)

and that it commutes with Di and anticommutes with s

[K̃t, Di] = 0, {K̃t, s} = 0. (41)

Notice that due to (39) K̃t has to be odd and it decreases the ghost number
by one. Moreover, it is nilpotent on Ai, Bi

K̃2
t = 0. (42)

On monomials of higher order in Ak and Bk, the homotopy operator Kt

cannot satisfy the Leibniz rule. If d is the total order of such a monomial m,
then the action of Kt on it has to be defined as

Ktm = d−1K̃tm. (43)

It is extended to general polynomials by linearity. Then Kt satisfies (33) and
from (42) it follows that

K2
t = 0. (44)

Now, we can use Kt to recover the solutions (30), (31) of the equations (26),
(27). For Λ this is straightforward. We apply Kt to the right hand side of (26)
and we get

•

Λ = Kt

(
−1

2
θklBk ? Bl

)
= −1

4
θkl
(
K̃tBk ? Bl −Bk ? K̃tBl

)
(45)

= −1
4
θkl (Ak ? Bl −Bk ? Al) =

1
4
θkl {Bk ? Al} ,

which coincides with (30).
For the gauge potential, however, there is a complication. If we apply ∆t to

the right hand side of (27) we obtain

∆t

(
Di

•

Λ +
1
2
θkl{∂kAi ?, Bl}

)
=

1
2
θkl[∆tFki ?, Bl], (46)
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where ∆tFki = DkBi −DiBk + i[Bk, Ai] + i[Ak, Bi]. This expression vanishes
only if we impose the condition that

∆tFki = 0. (47)

This property is true if we explicitly use the definition (28) of Bi = ∂iΛ, but
it has to be set as an additional constraint in the algebra generated by the Ai,
the Bi and their derivatives. In other words, such an algebra is not free. The
homotopy operator Kt can be defined only on B. In order to solve this problem,
we can add to the right hand side of (27) a term which is zero by the constraint
(47), but which makes the ∆t of it vanish algebraically. For this purpose we can
choose e.g. 1

2θ
kl{∆tFki ?, Al} and consider the expression

Ui ≡ Di

•

Λ +
1
2
θkl({∂kAi ?, Bl}+ {∆tFki ?, Al}). (48)

Then
∆tUi = 0 (49)

algebraically and we can apply the homotopy operator to Ui and obtain (31).
This is the same procedure we have proposed in [2] and [3] to treat the analogous
difficulty.

5 Solutions to higher order in θ

Observe that we can recover the first order in the θ expansion as

Λ(1) =
•

Λ (t) |t=0=
1
4
θij {∂iλ, aj} , (50)

A
(1)
i =

•

Ai (t) |t=0= −1
4
θkl {ak, ∂lai + fli} , (51)

which yields the well-known solution found by Seiberg and Witten [1]. More in
general, once we have the expressions (30) and (31) to first order, the evolution
equations provide a useful method for computing the terms of higher order in θ
by just noticing that

Λ(n) =
1
n!
∂nΛ(t)
∂tn

|t=0, A
(n)
i =

1
n!
∂nAi(t)
∂tn

|t=0 . (52)

Therefore, by simply differentiating with respect to t, we can compute Λ(n) and
A

(n)
i . This is an alternative and easier technique than applying the homotopy

operator order by order as suggested in [2, 3].
In particular to second order we get

••

Λ =
1
4
θkl
({

∂k
•

Λ?, Al
}

+
{
∂kΛ ?,

•

Al

}
+ ∂kΛ

•
? Al +Al

•
? ∂kΛ

)
(53)

••

Ai = −1
4
θkl
({ •

Ak?, ∂lAi + Fli

}
+
{
Ak ?, ∂l

•

Ai +
•

Fli

}
(54)

+Ak
•
? (∂lAi + Fli) + (∂lAi + Fli)

•
? Ak

)
.
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Notice that the equation for ∂nΛ
∂tn contains ∂n−1Ai

∂tn−1 , while the equation for ∂nAi
∂tn

depends only on ∂kAi
∂tk

, k = 0, . . . , n−1. This means that the equations for A are
independent from those for Λ. We need to compute A first and only afterwards
we can substitute it in the expression for Λ. If we use the homotopy operator,
exactly the opposite happens, we need the expression for Λ(n) first in order to

obtain A
(n)
i . If we insert the expressions (30) for

•

Λ and (31) for
•

Al we obtain

••

Λ =
1
16
θijθkl

(
{{∂i∂kΛ ?, Aj}+ {∂iΛ ?, ∂kAj}Al}

−{∂iΛ ?, {Ak ?, ∂lAj + Flj}} (55)

+2i [∂i∂kΛ ?, ∂jAl]
)
.

6 Ambiguities

The solution (55) has to be compared to other known solutions of the SW map
at the second order, like e.g. [4] or [6]. Before doing that, let us remark that
the solutions of (26) and (27) are not unique. This has been commented on by
a number of authors [2, 3, 4, 6, 9, 14].

If we start with the structure equations (9), (10)

sΛ = iΛ ? Λ,
sAi = ∂iΛ− i[Ai ?, Λ],

and consider a change in θ by an amount δθ, then we see that

∆ δΛ = −1
2
δθkl∂kΛ ? ∂lΛ , (56)

where the star product and the fields are at t = 1 and where ∆ is the same as
∆t for t = 1. Therefore, given a solution (δΛ)0 of this equation,

δΛ = (δΛ)0 + ∆H (57)

is also a solution, because of the nilpotency of ∆.
Similarly, for the gauge potential a change in θ induces a change in Ai

determined by

∆ δAi = DiδΛ +
1
2
δθkl {∂kAi ?, ∂lΛ} . (58)

Therefore, given a solution (δAi)0 corresponding to (δΛ)0, the solution corre-
sponding to (δΛ)0 + ∆H is

δAi = (δAi)0 +DiH + Si (59)

where Si is an arbitrary local functional of ghost number 0 satisfying

∆Si = 0. (60)
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This is a consequence of the fact that ∆ commutes with the covariant derivative:
Di∆ = ∆Di. The ambiguities determined by H are of the form of a gauge
transformation.

Due to the definition of ∆ the condition (60) means that Si transforms
covariantly

sSi = i[Λ ?, Si]. (61)

This covariant ambiguity is of a different type from the gauge ambiguity. It can
be interpreted as a field dependent redefinition of the gauge potential.

The ambiguities of gauge type are an infinitesimal version of the Stora in-
variance [3] of the structure equations (9), (10)

Λ → G−1 ? Λ ? G+ iG−1 ? sG,

Ai → G−1 ? Ai ? G+ iG−1 ? ∂iG, (62)

where G is an arbitrary local functional of ghost number 0.
If we compare the solution to second order given in (55) for t = 0

Λ(2) =
1
2
••

Λ|t=0 (63)

with the solution Λ′(2) found in [4] we see that

Λ(2) − Λ′(2) =
1
64
θklθmn∆0 ({{Dmak +Dkam − fkm, an}, al} (64)

− [[ak, am], fnl]) ,

which is an ambiguity of the gauge type.

7 Actions

Until this point, we have discussed the deformation of gauge structures and
their representations in terms of Yang-Mills fields, without any reference to the
dynamics of the fields themselves. To specify the dynamics, we must construct
actions that are invariant under the deformed gauge transformations

sAi = ∂iΛ− i[Ai ?, Λ],
sFij = −i[Fij ?, Λ]. (65)

The procedure is analogous to the construction of commutative Yang-Mills
theory. One arrives at the expression

SYM [A] = −1
4

∫
d4xTr Fij ? F

ij , (66)

where Fij is the noncommutative field strength given by (32), and the trace is
the ordinary matrix trace in the appropriate representation. The proof of the
invariance of (66) under (65) is based on the properties∫

dx f ? g =
∫
dx fg =

∫
dx g ? f,∫

dxTrM ? N =
∫
dxTrN ?M,

(67)
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the latter of which is valid for any pair of matrix valued functions, when surface
terms are ignored. Hence, the integral of the trace is invariant under any cyclic
permutation of its factors, also in the presence of the star product. Since the
fields A and F are generally valued in the enveloping algebra, we have to use
the Seiberg-Witten map in order to make sense of (66) as a theory with a
finite number of degrees of freedom, namely those of ai. To first order in the
deformation parameter θ, we find

SYM = −1
4

∫
d4xTr fijf

ij +
1
16
θkl
∫
d4xTr fklfijf

ij −

−1
2
θkl
∫
d4xTr fikfjlf

kl +O(θ2), (68)

where fij is the commutative field strength given by (16).
We would like to remark that at the level of free fields there is no differ-

ence between commutative and noncommutative theories, because the proper-
ties (67) guarantee that the star product disappears from any quadratic action.
It is only when interaction terms are present that the commutative and the
noncommutative theories are in fact different. However, interaction terms are
always present in the action (66), even if the gauge group is U(1), because of
the star commutator term in the expression (32) for F .

In addition to the pure Yang-Mills theory, one can construct a noncommu-
tative version of any action with a gauge-invariance, simply by replacing each
ordinary product of functions with a star product, leaving the matrix multipli-
cation and the trace unchanged, and finally expanding each noncommutative
field by means of the Seiberg-Witten map associated with the deformed gauge
structure. In particular, Yang-Mills theories with matter fields in various rep-
resentations have been considered by several authors.

Another gauge-invariant action that can be constructed in terms of gauge
potentials only is the Chern-Simons action in three dimensions. Its deformed
counterpart is obtained as described above and is

SCSt [A] =
1

4π

∫
d3x εklmTr(Ak ? ∂lAm −

2
3
iAk ? Al ? Am), (69)

where the subscript t refers to the parameter of the evolution equation described
in section 3.

If one were to expand (69) by means of the Seiberg-Witten map, one would
find that it is in fact identical to the undeformed action [10]. In other words

SCS1 [A] = SCS0 [a]. (70)

This can be proven to hold at all orders in the deformation parameter, by
showing instead

d

dt
SCSt [A] = 0, ∀t. (71)

The total t-derivative is computed using

f
•
? g =

i

2
θkl∂kf ? ∂lg (72)
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and the evolution equation for A

•

Ak= −1
4
θrs{Ar ?, ∂sAk + Fsk}. (73)

In this context, it is worth noting that the WZW model in two dimensions shares
the same property, namely the identity of the actions for the commutative and
the noncommutative version [11], and that the WZW model in two dimensions
is related to the Chern-Simons action in three.

8 Concluding remarks

In this paper we have limited ourselves to gauge theories of the Yang-Mills type
and have based our analysis on the structure equations (4) and (5) (which involve
BRST transformations) and their deformation. This formulation is sufficient
for Yang-Mills theories, but for gauge theories with reducible gauge transfor-
mations, such as theories with gauge potentials which are differential forms of
degree higher than one, it is appropriate to use the antifield formalism of Batalin
and Vilkoviskii (BV). The deformation of the gauge structure should then be
studied by defining generalized Seiberg-Witten maps in the context of the BV
formalism [12, 13, 14]. The use of the master equation couples intimately the
gauge transformations and the dynamics, i.e. the action functional.

The existence of the SW map, together with the understanding of its ambi-
guities, can be interpreted as a kind of “rigidity” of the structure of the gauge
group, analogous to the rigidity of semisimple Lie algebras under smooth defor-
mations of the structure constants: the structure constants can be brought back
to their original values by performing a linear transformation on the generators.
In the case of gauge groups the deformed structure equations can be reduced to
the undeformed equations by expressing the deformed fields (e.g. Ai and Λ) as
local functionals of the undeformed fields (ai and λ). Strictly speaking, we have
discussed only infinitesimal gauge transformations in a context in which only
the space-time coordinates are deformed. Thus, we have ignored all questions
for which the topology of the gauge group may be relevant when the gauge fields
are quantized [15].

As explained in the introduction, throughout this paper we have considered
the case of θij independent of x. Techniques of deformation quantization are
available for an x-dependent Poisson tensor (see, e.g. [16, 17], and references
therein, where general coordinate transformations for quantized coordinates are
also studied). It would be interesting to extend to that case the results described
in the previous sections.

Recently, several authors have pointed out the analogy of the Weyl-Moyal
star product with the associative, noncommutative star product which enters in
the formulation of Witten’s bosonic open string field theory [18, 19, 20, 21, 22,
23]. It would be interesting if methods of deformation quantization developed
in the context of the Seiberg-Witten map, would turn out to be useful in string
field theory.
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[5] B. Jurčo, S. Schraml, P. Schupp, J. Wess, Enveloping algebra valued gauge
transformations for non-abelian gauge groups on non-commutative spaces,
Eur. Phys. J. C17:521 (2000), hep-th/0006246
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